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SUMMARY

The numerical simulation of physical phenomena represented by non-linear hyperbolic systems of con-
servation laws presents speci�c di�culties mainly due to the presence of discontinuities in the solution.
State of the art methods for the solution of such equations involve high resolution shock capturing
schemes, which are able to produce sharp pro�les at the discontinuities and high accuracy in smooth
regions, together with some kind of grid adaption, which reduces the computational cost by using
�ner grids near the discontinuities and coarser grids in smooth regions. The combination of both tech-
niques presents intrinsic numerical and programming di�culties. In this work we present a method
obtained by the combination of a high-order shock capturing scheme, built from Shu–Osher’s conser-
vative formulation (J. Comput. Phys. 1988; 77:439–471; 1989; 83:32–78), a �fth-order weighted es-
sentially non-oscillatory (WENO) interpolatory technique (J. Comput. Phys. 1996; 126:202–228) and
Donat–Marquina’s �ux-splitting method (J. Comput. Phys. 1996; 125:42–58), with the adaptive mesh
re�nement (AMR) technique of Berger and collaborators (Adaptive mesh re�nement for hyperbolic
partial di�erential equations. Ph.D. Thesis, Computer Science Department, Stanford University, 1982;
J. Comput. Phys. 1989; 82:64–84; 1984; 53:484–512). Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the solutions of hyperbolic systems of conservation laws can de-
velop discontinuities even if the initial data are smooth. Since the di�erential equations that
represent the physical conservation laws have been derived from integral forms under smooth-
ness assumptions, the PDE’s will not hold in the classical sense at all points.
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To address these di�culties the so-called high resolution shock capturing (HRSC) schemes
arose. These methods provide an accurate (second or higher order) approximation to the solu-
tion in smooth regions and sharp pro�les of the discontinuities with no signi�cant oscillations.
The accuracy of the numerical simulations is, however, limited by the mesh size, since

no method can resolve phenomena whose physical scale is smaller than the mesh size. To
obtain solutions that resolve the small-scale features of the solution it is necessary to apply
HRSC schemes to very �ne computational grids. The computational cost of such calculations
is very high, and is usually measured in terms of days or months. Even with several computers
working in parallel a lot of problems is nowadays unapproachable.
Since �ne grids are needed only in the parts of the solution which have non-smooth struc-

ture, some techniques have been developed to reduce the computational cost, mainly based
on the use of non-uniform grids [1, 2]. These algorithms use a grid with cells of variable
size, trying to use cells of small size in some regions of interest, maintaining cells of bigger
size in smooth regions. These grids are often di�cult to manipulate in more than one space
dimension, because the solution at a cell depends on the solution at some neighbourhood
around it. The use of cells of mixed size renders di�cult the computation of the solution at
the next time step.
Another di�culty of such approaches is stability. The Courant–Friedrichs–Lax (CFL) con-

dition imposes a limit on the size of the time step, which depends on the size of the small-
est cell. Small time steps have to be used for the whole computational domain, even if in
smooth regions the CFL condition could be relaxed if the grids were uniform. See neverthe-
less Reference [3] for recent developments in schemes for moving meshes and local time-
stepping.
Adaptive mesh re�nement (AMR) [4–7] adds a new feature to this pool: temporal re�ne-

ment. The goal of the AMR procedure is to perform as few cell updates as possible, instead
of reducing the number of cells. The idea is to use a hierarchical set of Cartesian, uniform
meshes that live at di�erent resolution levels. At the coarser level there is a set of coarse mesh
patches covering the whole domain. Mesh patches at the next resolution level are obtained
by the sub-division of groups of coarse cells. By repeating this sub-division procedure one
can cover the regions of interest with mesh patches so that the non-smooth structure of the
solution can be resolved with the desired resolution. The grids at di�erent resolution levels
coexist, and some mesh connectivity information is needed to connect the solutions at di�erent
resolution levels. Provided the connectivity information, each mesh patch can be viewed in
isolation and can be integrated independently. The presence of discontinuities at a small part
of the domain does not restrict the time step that can be used at the coarse grid.
In this work, we present a numerical method to solve hyperbolic systems of conserva-

tion laws obtained by the combination of a high-order shock capturing scheme, built from
Shu–Osher’s conservative formulation [8, 9], a �fth-order weighted essentially non-oscillatory
(WENO) interpolatory technique [10] and Donat–Marquina’s �ux-splitting method [11], com-
bined with the AMR technique developed by Berger et al. [4–6]. The integration algorithm
has been successfully tested on �xed grids in Reference [12].
The paper is organized as follows. Section 2 describes the AMR algorithm and the

implementation of the whole method. The numerical method used to integrate the equa-
tions is brie�y reviewed in Section 3. One- and two-dimensional simulations of a 1.22 Mach
shock wave impinging a Helium bubble [13] are used in Section 4 to validate the algorithm.
Finally, in Section 5 we point out the conclusions.
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2. ADAPTIVE MESH REFINEMENT

The AMR algorithm is a general purpose framework for the e�cient numerical integration of
hyperbolic systems of equations. The algorithm was �rst developed by Berger in Reference [4]
and in the joint works with Oliger [5] and Colella [6]. In this section, we will mainly follow
the simpli�ed approach of Quirk [7]. We refer to the cited references for a more complete
description.
The AMR algorithm tries to �t the grid’s resolution to the needs of the numerical solution by

re�ning the grid only in regions where the solution has non-smooth structure. Under favourable
circumstances the algorithm requires only a part of the computational power needed by an
equivalent �ne grid of uniform size.
This computational e�ciency comes from the re�nement in space provided by the hierar-

chical grid system, together with the re�nement in time. Moreover, no special restrictions are
imposed on the basic numerical method used to integrate the equations.
On the basis of the AMR algorithm, lies the fact that the solution of an hyperbolic system

of conservation laws is composed by waves moving through regions in which the solution
is smooth. The main di�culty of HRSC schemes consists of catching and resolving these
waves, since the regions of smoothness can be solved with no major di�culties.
It is well known that the movement of the waves is governed by the eigenstructure of

the Jacobian matrix of the system. In particular, the speed of the waves is controlled by the
eigenvalues of the Jacobian matrix.
The main idea is that the AMR algorithm can ensure that, if the waves are initially covered

by a �ne grid, they will always be, by adapting the grids before the waves can escape.

2.1. Hierarchical grid system

The AMR algorithm uses a hierarchical grid system composed by a set of Cartesian coarse
mesh patches, which constitutes the level 0 of the hierarchy and de�nes the computational
domain. These patches can be re�ned locally by de�ning �ner mesh patches that form the
level 1 of the hierarchy. The �ner patches are obtained by the sub-division of groups of coarse
cells that have been marked for re�nement. This process can be repeated to obtain even �ner
patches at level 2. Grids of the desired resolution can be obtained by iterating this process.
Following Quirk’s terminology [7], the term grid will refer to the set of mesh patches that
belong to the same level, while a mesh (or mesh patch) refers to a single patch, which is a
Cartesian product of intervals, i.e.

G‘; k =
d∏

i=1
[ai; bi]

where d is the number of space dimensions.
A grid hierarchy G with L levels of re�nement is composed by L grids {G‘}L−1

‘= 0, each of
them formed by the union of some mesh patches

G‘=
N‘⋃
k=1

G‘; k

where N‘ indicates the number of mesh patches at level ‘.
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The patches at di�erent levels coexist, and are de�ned in a way such that the grid at a
certain level ‘ is contained in the coarser grid at level ‘ − 1. This nestedness property is
essential in the AMR algorithm.
We denote by r1‘ ; : : : ; r

d
‘ the re�nement factors corresponding to level ‘ in the grid hierarchy,

where rk‘ represents the number of sub-divisions made in the kth Cartesian direction in the
adaption process. Cells at level ‘ − 1 are divided into ∏d

k=1 r
k
‘−1 cells. For simplicity we will

suppose that the re�nement factors are the same in each direction, i.e. r1‘ = · · · = rd‘ , so we
represent them all by r‘. Usual values of r‘ are 2 and 4.

2.2. The adaption process

Given a grid G‘ the adaption process obtains a set of mesh patches that will compose the
grid G‘+1. This adaption procedure is composed by three major processes: �rst, a process to
decide which cells of the grid G‘ have to be re�ned is needed; second, a clustering procedure
groups the marked cells into Cartesian patches; �nally, the newly created mesh patches are
�lled with a solution. The only restriction is the nestedness property.

2.2.1. Flagging for re�nement. To decide which cells of a given grid have to be marked for
re�nement Berger [4] proposed to use an estimation of the local truncation error based on
Richardson extrapolation, marking those cells for which the estimation of the local truncation
error is above a prescribed tolerance. Despite Berger’s approach being more accurate, we
will use more pragmatic approaches as proposed by Quirk [7], which are actually cheaper to
implement and seem to work properly.
Since the main three kind of singularities that appear in the solutions of hyperbolic systems

of conservation laws constitute variations in the solution or in the gradient of the solution it
could be enough to use the gradient of the solution as an indicator of the presence of such
discontinuities. If the change in some seminorm of the gradient (e.g. the absolute value of
the density component of the gradient for Euler equations or some norm of the gradient for
general equations) of the solution between two adjacent cells is above a given tolerance Rtol,
then both cells are �agged for re�nement.
Once the coarse grid has been �agged we add a certain number of safety �ags to ensure

that the cells adjacent to a singularity are re�ned. The safety �ags will avoid singularities to
escape from the �ne grid during one coarse time step.

2.2.2. The clustering process. Once the desired coarse cells have been �agged for re�nement,
the clustering process creates mesh patches at the next re�nement level that contain every
�agged cell and possibly some non-�agged cells. For each coarse mesh patch a simple and
e�ective clustering procedure consists of the following steps. First the minimum Cartesian
patch that contains all the �agged cells is found. If the ratio between the number of �agged
cells and the total number of cells in the patch is above a prescribed tolerance Ctol then the
patch is accepted and the process ends for the current patch. Otherwise the patch is sub-
divided into smaller sub-patches and the same criterion is applied to each sub-patch. The
procedure continues until no �agged cells remain un-�agged. The procedure is then applied
to the next coarse patch, until every patch in the coarse grid had been clustered. A new �ne
grid is then generated using the accepted coarse patches. For each coarse patch we create a
�ne patch by the sub-division of each coarse cell into (r‘)d sub-cells.
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For computational e�ciency reasons we have implemented some procedures to avoid the
formation of mesh patches that have a very high aspect ratio, or patches that are very small.

2.2.3. Transfer of solution. The new �ne grid obtained by the clustering process needs to be
�lled with a numerical solution. To this aim the AMR algorithm uses the following steps: �rst,
as the nestedness property ensures that the new grid is wholly contained in the coarser grid,
a numerical solution is interpolated from the underlying coarser grid. Second, the numerical
solution is copied from the grid of the same level that existed before the adaption process,
in the regions in which both grids overlap, overwriting the interpolated solution. Finally,
boundary conditions are applied wherever the patch boundary overlaps the domain boundary.

2.3. Flow integration and time re�nement

One major advantage of the AMR algorithm is that each single mesh can be integrated in
isolation. To achieve such an abstraction we have to supply some boundary information of the
mesh. Since the boundary of an arbitrary patch does not necessarily coincide with the domain
boundary, the boundary information can come from the underlying coarse grid, from another
grid of the same level or from the domain boundary. A simple way to provide this boundary
information is to augment each mesh patch with some dummy cells surrounding it, similarly
to the usual approach used with a �xed grid covering the whole domain to implement the
boundary conditions. These dummy cells are �lled with data before the patch is integrated.
The AMR algorithm interleaves the integration of grids at di�erent levels in a way such

that each grid uses its own time step, according to its grid size. In one space dimension, if
a grid G‘, with grid size �x‘, uses a time step �t‘ and its re�nement factor is r‘ and we
choose

�t‘+1 =
�t‘
r‘

(1)

the Courant number �t‘=�x‘ remains constant independently of ‘. To evolve both grids from
time t to time t +�t‘ we have to perform one time step for the grid G‘ and r‘ time steps
for the grid G‘+1. Similar procedures are used in more than one space dimension to ensure
that the CFL condition is veri�ed in each grid separately.
For a generic grid hierarchy the grids are integrated from coarse to �ne, ensuring that each

grid is always back in time with respect to coarser grids. Once a grid G‘ is integrated from
time t to time t +�t‘ it will not be integrated again until all the �ner grids at levels ‘ + 1
to L − 1 had been integrated until time t +�t‘.

2.3.1. Treatment of patch boundaries. When a patch of a grid G‘+1 is integrated from time
t to time t + (�t‘=r‘), its dummy cells have to be �lled with data, but the grid G‘ is not
available at time t + (�t‘=r‘). In this case linear interpolation in time is used to obtain a
numerical solution at the intermediate times

t +
�t‘
r‘

; t +
2�t‘
r‘

· · · ; t + (r‘ − 1)�t‘
r‘

in which the grid G‘+1 is going to be integrated. The interpolation in time is performed using
the known solutions in G‘ at times t and t +�t‘. Then interpolation in space is applied to
�nd approximated values to the numerical solution with which to prime the dummy cells.
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2.3.2. Projection of solution. Once all grids have been evolved one coarse time step we
have several numerical solutions corresponding to the grids at di�erent resolution levels. As
we shall use a conservative numerical method to integrate the equations it seems natural to
enforce some kind of inter-grid conservation. Since changes in the conserved variables are
due to the �uxes crossing the cell boundaries, a way to enforce inter-grid conservation is to
ensure that the �uxes that cross a cell interface during one time step remain the same for all
grids, following a purely �nite-volume approach. The idea is to project to the coarse grid G‘

the arithmetic mean of the numerical �uxes computed in the r‘ integrations performed on the
�ne grid G‘+1, and then re-integrate the coarse grid using the projected numerical �uxes. This
process amounts to a correction that can be applied to the updated coarse solution without
actually re-integrating the coarse grid, see References [6, 7].
Our numerical tests show no inconsistencies due to the lack of inter-grid conservation

if the above �x-up is not applied, but there is another reason for its application: the up-
dated coarse solution with numerical �uxes coming from the �ner grid provides more reso-
lution of the shock waves and contact discontinuities. If some data is then interpolated from
coarse to �ne grids the results are more accurate if the conservative �x-up has been applied.
This feedback mechanism provides a sharper coarse numerical solution which is visually
distinguishable after some time steps from the coarse solution without the conservative �x-
up. A sharper coarse solution needs less re�nement, thus improving the performance of the
algorithm.

2.4. The AMR algorithm

The main issue that has to be taken into account to adapt the grid hierarchy is to ensure
that, if a discontinuity is covered by a grid G‘ it will always be covered by that grid, i.e.
we have to adapt the grid G‘ before the discontinuity can escape. In Reference [7] Quirk
shows that, for the linear advection equation, it is enough to adapt a grid G‘ after r‘−1
integrations (i.e. after an integration of the grid G‘−1) to prevent discontinuities to escape
from the grid G‘, provided the Courant numbers of each grid are given by (1), the typ-
ical CFL condition (�t0=�x0)61 is satis�ed and at least one safety �ag is added in the
re�nement process. This leads us to perform the adaption process of the grid G‘ after every
r‘−1 integrations of that grid. The integration and adaption processes can be organized in
a way such that the adaption process follows the integration process in the correct order,
see Reference [7].

3. SHU–OSHER’S SCHEME WITH DONAT-MARQUINA’S FLUX SPLITTING

We brie�y describe here the numerical method used to integrate the equations on each mesh
patch, its building blocks being: Shu–Osher’s �ux formulation [8, 9], Donat–Marquina’s �ux-
splitting formula [11], the WENO5 reconstruction procedure [10] and a third-order TVD
Runge–Kutta ODE solver [9]. Our choice of Donat–Marquina’s �ux splitting, which is based
on a double linearization, instead of other �ux splittings such as Roe’s, is motivated by
the good results obtained in experiments where one linearization gives poorer results (shock
re�ections, carbuncle phenomena, etc.) [11, 14].
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The hyperbolic system of conservation laws to be solved are:

Ut +
d∑

i=1
Fi(U )xi =0

U (x; 0) =U0(x)
(2)

where U = (U1; : : : ; Um)T; x= x1; : : : ; xd), Ui:Rd −→ R and Fi:Rm −→ Rm, although, for
the sake of clarity and given that schemes based on the Shu–Osher’s formulation described
below work in a dimension by dimension fashion, we will restrict this exposition to the
one-dimensional case, i.e. d=1 in (2). System (2) will be thus written as

Ut + F(U )x =0

U (x; 0) =U0(x)
(3)

We will denote by Un
j the computed approximation to the exact solution U (xj; tn) of (3),

where xj=(j + 1
2)�x; tn= n�t. The vector {Un

j } is denoted by Un.
We follow Shu–Osher’s �nite-di�erence �ux formulation, which is better explained for a

one-dimensional (m=1) conservation law.
Let ��x be the function that veri�es

1
�x

∫ x+�x
2

x−�x
2

��x(s) ds=F(U (x)) (4)

then

F(U (x))x=
��x(x + (�x=2))− ��x(x − (�x=2))

�x
(5)

and the conservation law Ut + F(U (x))x=0 is equivalent to

Ut +
��x(x + (�x=2))− ��x(x − (�x=2))

�x
=0 (6)

Therefore, we can use the Euler scheme on this equation to obtain a conservative scheme
with high-order space accuracy (the high-order time accuracy is obtained by the third-order
TVD Runge–Kutta ODE solver of Reference [9]) if we accurately approximate
��x(xj+(�x=2)) by some numerical �ux. This numerical �ux may be obtained by the recon-
struction via primitive approach, which essentially amounts to evaluating at the cell interface
xj+1=2 a high order essentially non-oscillatory interpolator (ENO, WENO, : : :), based on the
(known) cell averages F(U (xi)) of the unknown ��x in the cell [xi − (�x=2); xi + (�x=2)].
Our extension to systems is achieved by the use of local characteristic variables and �uxes,

following Donat–Marquina’s �ux-splitting formula, which is based on a double linearization of
the Jacobian matrix F

′
(Un) at each cell interface xj+1=2, avoiding the use of average matrices.

At a given cell interface xj+1=2, we compute two sided interpolation UL;R
j+1=2 of the conserved

variables or the variables the eigenstructure of F ′(U ) depends on. The values coming from
the left, UL

j+1=2, and from the right, UR
j+1=2, are computed using high order essentially non-

oscillatory interpolation procedures with upwind biased stencils that contain the points xj and
xj+1, respectively. For this purpose, we have used a fourth-order WENO procedure based on
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point values, similar in conception to the WENO5 reconstruction procedure of Jiang and Shu
[10], originally developed by Liu et al. [15].
At each point xk belonging to some upwind biased stencil that contains the given cell inter-

face xj+1=2, these interpolated quantities are used to de�ne two sets of characteristic variables
wL;R

p; k = lp(U
L;R
j+1=2) · Uk and characteristic �uxes FL;R

p; k = lp(U
L;R
j+1=2) · F(Uk), where lp(U ), rp(U )

stand for normalized left and right eigenvectors of the Jacobian matrix F ′(U ) corresponding to
the eigenvalue (characteristic speed) �p(U ). Upwind characteristic �uxes are then computed
according to the characteristic speeds at both sides, except at sonic points, at which a local
Lax-Friedrichs splitting (see Reference [9]) is applied.
Let R(g−s1 ; : : : ; gs2 ; x) denote the evaluation at x of a reconstruction based on cell-averages

gj of a function at some s1 + s2 +1 adjacent cells (we use here the WENO5 procedure [10]).
The algorithm to compute the numerical �uxes at xj+1=2 is as follows:

Algorithm 1
if �p(U ) does not change sign in a path in phase space connecting Uj and Uj+1

if �p(Uj)¿0
 L
p; j=R(FL

p; j−s1 ; : : : F
L
p; j+s2 ; xj+12

)

 R
p; j=0

else
 L
p; j=0

 R
p; j=R(FR

p; j−s1+1; : : : F
R
p; j+s2+1; xj+12

)

else
�
j+12

= max(|�p(Uj)|; |�p(Uj+1)|)

 L
p; j=R( 12 (F

L
p; j−s1 + �

j+12
wL

p; j−s1); : : :
1
2 (F

L
p; j+s2 + �

j+12
wL

p; j+s2); xj+12
)

 R
p; j=R( 12 (F

R
p;j−s1+1 − �

j+12
wR

p; j−s1+1); : : :
1
2 (F

R
p; j+s2+1 − �

j+12
wR

p; j+s2+1); xj+12
)

With the numerical �ux de�ned as

F̂
j+12

=
∑
p

 L
p; jrp(U

L

j+12
) +  R

p; jrp(U
R

j+12
) (7)

the system of ODEs

@tUj +
F̂

j+12
− F̂

j− 1
2

�x
=0 (8)

is a highly accurate spatial semi-discretization of (3). A third-order TVD Runge–Kutta ODE
solver [9] is applied to obtain third-order time accuracy as well.
For higher space dimensions, this scheme admits a straightforward tensorial (dimension by

dimension) extension. A more detailed description of the overall algorithm can be found in
Reference [12].
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4. NUMERICAL RESULTS

In this section, we analyse the computational performance of the numerical scheme for a
test problem consisting of a 1:22 Mach shock wave impinging a Helium bubble, studied by
Haas and Sturtevant [13] and numerically simulated by Quirk and Karni [16]. The experiment
has been successfully simulated by Marquina and Mulet [12] using the integration algorithm
described here on a �xed grid.
An extension of the Euler equations for a �uid composed by the mixture of two perfect

gasses in thermal equilibrium consists of adding a new equation which models the conservation
of one of the gasses, which implies the conservation of both gasses due to the conservation
of mass. We add a new variable � which represents the mass fraction of one of the gasses.
Consequently, the quantity 1−� represents the mass fraction of the other gas. The model can
thus be expressed in terms of the conservation of total mass, momentum, total energy and
mass of the �rst component.

4.1. One-dimensional experiment

The equation of conservation of the mass of the �rst gas is

(��)t + (��u)x=0

The new system of equations extending the Euler equations of gas dynamics in one space
dimension becomes: ⎛

⎜⎜⎜⎜⎜⎜⎝

�

�u

E

��

⎞
⎟⎟⎟⎟⎟⎟⎠

t

+

⎛
⎜⎜⎜⎜⎜⎜⎝

�u

�u2 + p

u(E + p)

��u

⎞
⎟⎟⎟⎟⎟⎟⎠

x

=0 (9)

where � represents the density of mass, u is the velocity, E is the total energy per unit volume
and p is the pressure.
System (9) is hyperbolic. Its Jacobian matrix can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

� − 3
2

u2 − ��′(�)� (3− �)u � − 1 �′(�)�

� − 1
2

u3 − uH − u��′(�)� H − (� − 1)u2 �u u�′(�)�

−�u � 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where � is the speci�c internal energy, �=(E=�) − 1
2 u

2 and H is the enthalpy,
H =[c2=(�(�) − 1)] + 1

2 u
2. The ratio of speci�c heats �= �(�) depends on the composition

of the mixture through the relation:

�=
Cp1�+ Cp2 (1− �)
Cv1�+ Cv2 (1− �)

(10)
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where Cpi (resp. Cvi) are the speci�c heats at constant pressure (resp. volume) of �uid i. The
pressure is related to the other variables through the equation:

p=(� − 1)�� (11)

The eigenstructure of the Jacobian matrix depends only on three variables, the sound speed
c=

√
�p=�, the velocity u and the mass fraction �.

Its eigenvalues are

�1 = u − c; �2 = �3 = u; �4 = u+ c

the corresponding right eigenvectors are:

r1 = [1; u − c; H − uc; �]T

r2 = [1; u; 12 u
2; �]T

r3 =
[
0; 0;− �′(�)c2

�(� − 1)2 ; 1
]T

r4 = [1; u+ c; H + uc; �]T

and the (normalized) left eigenvectors are:

l1 =
[
�2 +

u
2c

− ��3;−�1u − 1
2c

; �1; �3

]

l2 = [1− 2�2 + 2��3; 2�1u;−2�1;−2�3]

l3 = [−�; 0; 0; 1]

l4 =
[
�2 − u

2c
− ��3;−�1u+

1
2c

; �1; �3

]

where

�1 =
� − 1
2c2

�2 = �1
u2

2

�3 =
�′(�)

2�(� − 1)

The computational domain is the interval [0; 0:356]. The initial data represents a one-
dimensional Helium “bubble”, located in the interval [0:15; 0:20] surrounded by air.
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A left-travelling Mach 1.22 shock wave is located at x=0:225:

U (x; 0)=U0(x)=

⎧⎪⎪⎨
⎪⎪⎩

UA if 06x¡0:15 or 0:2¡x¡0:225

UB if 0:156x60:2

US if 0:2256x60:356

(12)

where

UA = (�A; uA; pA; �A)= (1; 0; 1; 1)

UB = (�B; uB; pB; �B)= (0:1819; 0; 1; 0) (13)

US = (�S; uS ; pS ; �S)= (1:3764; 0:3947; 1:5698; 1)

Quantities UA represents quiescent air, UB quiescent Helium and US is the state connected
with UA by a Mach 1:22 shock travelling to the left. This is the same setup used in Reference
[12] for the one-dimensional experiment.
The density pro�le of the numerical solution at time t=0:2 obtained with the AMR algo-

rithm with a grid hierarchy of four levels equivalent to �xed grids of 100; 200; 400 and 800
points, respectively, is shown in Figure 1, compared with a reference solution computed with
8000 points. The diamonds represent the numerical solution obtained with the AMR algorithm,
while the numerical solution obtained with a �xed grid of 800 points has been represented
with dots. The solid line represents the reference solution. Figure 2 shows zoomed regions
of the density pro�le of Figure 1. The parameters used in this simulation are Ctol = 0:7 and
Rtol = 0:5. A CFL condition equal to 0:5 has been used.
The di�erences in density between the solution of the AMR algorithm and the solution

obtained with an equivalent �xed grid are shown in Table I.
We observe that all the relevant features of the solution have been captured by the AMR

algorithm, and that the percentage of integrations is closely related to the percentage of ex-
ecution time. The big part of the computational time is used to integrate the equations, and
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Figure 1. 1D shock–bubble, density.
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Figure 2. 1D shock–bubble interaction, zoomed regions of the density pro�le of Figure 1.

Table I. Comparison between the AMR algorithm and an equivalent �xed
grid algorithm for the shock–bubble for the two-component 1D Euler

equations (9) with initial data (12).

dim0 Levels dim �x ‖�FIX − �AMR‖∞ % time % integr.

100 4 800 2:7275 · 10−3 79.49 63.64
200 4 1600 3:0694 · 10−3 49.91 42.76
500 4 4000 5:1692 · 10−3 23.82 27.38
1000 4 8000 3:6760 · 10−3 24.67 20.54

The errors refer to the density �eld.

only a small percentage of the computational time is devoted to manage the grid hierarchy
and to inter- and intra-grid communications, except when the number of integrations is very
small.
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Table II. Comparison of e�ciency and quality of AMR approximations
for di�erent parameter sets.

Rtol Ctol % integrations % time ‖�AMR − ��x‖1 ‖�AMR − ��x‖∞

1.0 0.7 18.53 19.21 3:31e− 04 1:08e− 02
1.0 0.8 17.10 17.74 3:31e− 04 1:08e− 02
1.0 0.9 15.22 16.99 3:18e− 04 5:32e− 03
4.0 0.7 11.77 12.18 3:64e− 04 1:44e− 02
4.0 0.8 11.17 11.69 3:65e− 04 1:46e− 02
4.0 0.9 10.65 11.38 3:55e− 04 1:48e− 02
8.0 0.7 11.29 11.63 4:71e− 04 2:85e− 02
8.0 0.8 10.19 10.75 4:72e− 04 2:88e− 02
8.0 0.9 10.03 10.51 4:55e− 04 2:29e− 02

The next experiment analyses the dependency of the approximation obtained by the method,
and its e�ciency, on the parameters Ctol and Rtol. A 100 coarse grid with four re�nement
levels (corresponding to a 800 �ne grid), a Courant number of 0.45 and a �nal time 0.2 is used
in the experiments, where Rtol vary in {1; 4; 8} and Ctol vary in {0:7; 0:8; 0:9}. In Table II the
results of these computations are shown. As expected, one can see that the percentage of CPU
time with respect to an equivalent �x grid computation decreases when Rtol or Ctol increase.
The density di�erence between the AMR computation and the �ne grid computation (denoted
in the table by �AMR − ��x), either measured in 1 or ∞ norm, does not vary signi�cantly
with the change in parameters, but a speedup of almost 2 can be achieved when appropriately
choosing the tolerance parameters.

4.2. Two-dimensional experiment

In this section, we address the shock–bubble interaction problem in its two dimensional ver-
sion. The governing equations for this problem are the Euler equations of gas dynamics
augmented with an additional equation that models the conservation of one of the gasses:

(��)t + (��u)x + (��v)y=0

The system can be written in the form Ut + F(U )x +G(U )y=0:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

�u

�v

E

��

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�u

�u2 + p

�uv

u(E + p)

��u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�v

�uv

�v2 + p

v(E + p)

��v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y

=0 (14)

where u and v are the velocity components of the �uid in the x and y directions, respectively,
E=(p=�(�)) + 1

2 �(u
2 + v2) is the total energy and the internal energy is given by the EOS

(10) and (11).
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The analysis made in the one-dimensional case for the Jacobian matrices can be repeated
here for F ′(U ) and G′(U ). We simply state here the eigenstructure of F ′(U ). By interchang-
ing u and v and the second and third components of each left and right eigenvector the
eigenstructure of G′(U ) is obtained. See Reference [12] and references therein for further
details.
The eigenvalues of F ′(U ) are �1 = u − c, �2;3;4 = u, �5 = u+ c and the corresponding right

eigenvectors ri and left eigenvectors li, normalized so that ri · lj= �ij, are

r1 = [1 u − c v H − uc �]T

r2 =
[
1 u v

u2 + v2

2
�

]T

r3 = [0 0 1 v 0]T

r4 =
[
0 0 0 − �′(�)c2

�(� − 1)2 1
]T

r5 = [1 u+ c v H + uc �]T (15)

l1 =
[
�2 +

u
2c

− ��3 − �1u − 1
2c

�1v �1 �3

]

l2 = [1− 2�2 + 2��3 2�1u 2�1v − 2�1 2�3]

l3 = [−v 0 1 0 0]

l4 = [−� 0 0 0 1]

l5 =
[
�2 − u

2c
− ��3 − �1u+

1
2c

�1v �1 �3

]

where

�1 =
� − 1
2c2

�2 = �1
u2 + v2

2

�3 =
�′(�)

2�(� − 1)

and H is the enthalpy, H =[c2=(�(�)− 1)] + 1
2(u

2 + v2).
The computational domain consists of the square [0; 0:890]× [0; 0:089]. The Helium bubble

is a circle with centre (0:42; 0:0445) and radius r=0:025. A vertical 1.22 Mach shock wave,
initially located at x=0:6675 is moving left through air, see Figure 3.
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Figure 3. Computational domain of the two-dimensional experiment (not to scale).

The initial data are the following:

U (x; 0)=U0(x)=

⎧⎪⎪⎨
⎪⎪⎩

UA if 06x¡0:6775 and x =∈B

UB if x ∈ B

US if 0:66756x60:890

where B= {(x; y) ∈ R2=(x−0:42)2+(y−0:0445)260:0252} is the circle of centre (0:42; 0:0445)
and radius r=0:05 that represents the Helium bubble. The value of UA, represents quiescent
air, UB represents Helium contaminated with a 28% of air, in equilibrium with the surrounding
air, and US is the state connected with quiescent air by a vertical left moving 1.22 Mach shock
wave. The respective values of UA;UB and US are:

UA = (�A; uA; vA; EA; ��A)= (1:225; 0; 0; 253312:5; 1:225)

UB = (�B; uB; vB; EB; ��B)= (0:2228; 0; 0; 149007:35; 0)

US = (�A; uS ; vS ; ES ; ��S)= (1:6861;−156:26; 0; 265521:1; 1:6861)

We have used a coarse mesh of 100× 5 cells to discretize the upper part of the computa-
tional domain. To obtain the lower part by symmetry we impose arti�cial re�ecting boundary
conditions, following the same approach of Quirk and Karni [16] and Marquina and Mulet
[12]. Six levels of re�nement with all re�nement factors set to 2 have been used to obtain
a resolution equivalent to a �xed grid of 3200× 160 cells. In this experiment we have used
the following parameters: the CFL condition has been set to 0:45, the re�nement parameter is
Rtol = 5:0 and the clustering parameter is Ctol = 0:8. In Figure 4 we display Schlieren images
of the bubble at time t=511 �s after the shock arrives at the Helium bubble, as computed
with a �xed grid of 3200× 160 cells and with the AMR algorithm. In this preliminary result
we can see that the AMR algorithm has been able to resolve all the structure of the interface
with the same quality as with the �xed grid algorithm. With this setup the AMR algorithm
performs a 10:72% of integrations with respect to the �xed grid algorithm and requires a
11:72% of computational time.
In Figure 5 we overlay Schlieren images on the grid to compare the results of this simulation

with two parameter sets: (a) Rtol = 3; Ctol = 0:7; (b) Rtol = 5; Ctol = 0:9. As can be observed in
the graphics, the patches at the di�erent levels of the grid hierarchy in case (a) are larger
(but fewer in number) and cover more space than in case (b). The ratio of integrations with
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Figure 4. Schlieren image at time t=511 �s computed with the AMR algorithm (top)
and with a �xed grid algorithm (bottom).

Figure 5. Comparison of AMR results for two di�erent parameter sets, with only upper half part shown.

respect to the �xed grid algorithm is 15.43% in case (a) and 10.12% in case (b). Therefore,
we recommend a clustering tolerance Ctol ≈ 0:8; 0:9.
Unfortunately, we cannot give a general recommendation for the �agging tolerance Rtol, for

it depends heavily on the problem: if this parameter is set too small, we will get lots of �agged
cells, thus an ine�cient execution, whereas if set too large, some regions where high resolution
is needed would not be re�ned. We nevertheless feel that there is room for improvement if
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we base, as intended in our future research, the �agging procedure on multiresolution analysis
(see Reference [17] and references therein).

5. CONCLUSIONS

We have presented a numerical method for the solution of hyperbolic systems of conser-
vation laws, obtained by the combination of a �fth-order high resolution shock capturing
scheme, built from Shu–Osher’s conservative formulation [8, 9], a �fth-order WENO inter-
polatory technique [10] and Donat–Marquina’s �ux-splitting method [11], with the adaptive
mesh re�nement technique of Berger et al. [4–6], in the simpli�ed form proposed by Quirk
[7]. The scheme inherits the robustness of Donat–Marquina’s basic scheme and has shown to
be able to resolve the structure of the numerical solution with an accuracy comparable to the
computations made with �xed grids, with a signi�cant reduction of the computational cost.
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